The Catalytic Performance of MnSO4-Doped Natural Zeolite in Ethyl Acetate Synthesis

Penulis

  • Adelia Natasya Regita Nugroho Department of Chemical Engineering, Faculty of Engineering, Universitas Singaperbangsa Karawang, Karawang, 41361, Indonesia
  • Teguh Pambudi Department of Chemical Engineering, Faculty of Engineering, Universitas Singaperbangsa Karawang, Karawang, 41361, Indonesia
  • Alfieta Rohmaful Aeni Department of Physics, Faculty of Engineering, Universitas Singaperbangsa Karawang, Karawang, 41361, Indonesia
  • Retno Utami Department of Chemical Engineering, Faculty of Engineering, Universitas Singaperbangsa Karawang, Karawang, 41361, Indonesia

DOI:

https://doi.org/10.33751/helium.v5i1.23

Kata Kunci:

Catalyst, Zeolite, MnSO4, Ethyl Acetate, Esterification

Abstrak

Ethyl acetate is a compound that is widely used across various industries. However, its esterification process typically requires a catalyst to improve reaction efficiency. This study focuses on developing a MnSO4-doped natural zeolite catalyst using the impregnation method to enhance its catalytic activity in the esterification of acetic acid and ethanol. The synthesized catalyst was characterized using FTIR, XRD, and SEM-EDS to analyze structural and morphological changes. FTIR characterization revealed the presence of Si-O-Si and Al-O-Si bonds in the 1000 to 1100 cm-1 region, while XRD confirmed that the zeolite with transition metal impregnation shows a decrease in the intensity of the diffraction peak. SEM-EDS analysis demonstrated that the MnSO4-doped natural zeolite exhibited a more uniform morphology, with manganese ions effectively integrated into the surface and pores of the zeolite. Additionally, EDS measurements detected the presence of elements such as Si, O, Al, Na, and Mn, confirming the successful modification of the zeolite to act as a catalyst. Catalytic testing showed that the highest ethyl acetate conversion achieved was 91.27% within 90 minutes, with optimal performance observed at a catalyst mass of 1 g. These findings indicate that modifying zeolite with MnSO4 can significantly enhance catalyst performance in esterification reactions, making it a more efficient and sustainable alternative to conventional catalysts.

Referensi

Z. Felfelian and M. Mahdavi, “A new ZrC nano powder solid acid catalyst for the esterification synthesis of ethyl acetate,” Catal. Commun., vol. 182, no. August, p. 106752, 2023, doi: 10.1016/j.catcom.2023.106752.

C. C. S. Nindya, D. R. Anggara, Nuryoto, and K. Teguh, “Esterification glycerol (by product in biodiesel production) with oleic acid using mordenite natural zeolite as catalyst: Study of reaction temperature and catalyst loading effect,” IOP Conf. Ser. Mater. Sci. Eng., vol. 909, no. 1, 2020, doi: 10.1088/1757-899X/909/1/012001.

J. Ma, S. Wang, Y. Duan, C. Ding, and X. Wang, “Synthesis of Ethyl Acetate by the Esterification Process: Process Optimization,” Eng. Adv., vol. 3, no. 6, pp. 449–453, 2024, doi: 10.26855/ea.2023.12.002.

P. Sahu and A. Sakthivel, “Zeolite-β based molecular sieves: A potential catalyst for esterification of biomass derived model compound levulinic acid,” Mater. Sci. Energy Technol., vol. 4, pp. 307–316, 2021, doi: 10.1016/j.mset.2021.08.007.

F. Yang and J. Tang, “Catalytic Upgrading of Renewable Levulinic Acid to Levulinate Esters Using Perchloric Acid Decorated Nanoporous Silica Gels,” ChemistrySelect, vol. 4, no. 4, pp. 1403–1409, 2019, doi: 10.1002/slct.201803608.

Q. Zhang et al., “Environmentally-friendly preparation of Sn(II)-BDC supported heteropolyacid as a stable and highly efficient catalyst for esterification reaction,” J. Saudi Chem. Soc., vol. 28, no. 3, p. 101832, 2024, doi: 10.1016/j.jscs.2024.101832.

B. M. Kurji and A. S. Abbas, “MCM-48 from rice husk ash as a novel heterogeneous catalyst for esterification of glycerol with oleic acid: Catalyst preparation, characterization, and activity,” Case Stud. Chem. Environ. Eng., vol. 8, no. May, p. 100382, 2023, doi: 10.1016/j.cscee.2023.100382.

A. Kokel, C. Schäfer, and B. Török, “Organic Synthesis Using Environmentally Benign Acid Catalysis,” Curr. Org. Synth., vol. 16, no. 4, pp. 615–649, 2019, doi: 10.2174/1570179416666190206141028.

R. Yahya and R. F. M. Elshaarawy, “Highly sulfonated chitosan-polyethersulfone mixed matrix membrane as an effective catalytic reactor for esterification of acetic acid,” Catal. Commun., vol. 173, p. 106557, 2023, doi: 10.1016/j.catcom.2022.106557.

A. Rafiani, D. Aulia, and G. T. M. Kadja, “Zeolite-encapsulated catalyst for the biomass conversion: Recent and upcoming advancements,” Case Stud. Chem. Environ. Eng., vol. 9, p. 100717, 2024, doi: 10.1016/j.cscee.2024.100717.

S. Sumari, F. Fajaroh, I. Bagus Suryadharma, A. Santoso, and A. Budianto, “Zeolite Impregnated with Ag as Catalysts for Glycerol Conversion to Ethanol Assisted by Ultrasonic,” IOP Conf. Ser. Mater. Sci. Eng., vol. 515, no. 1, 2019, doi: 10.1088/1757-899X/515/1/012075.

O. C. H. Arjek and I. Fatimah, “Modifikasi Zeolit Dengan Tembaga (Cu) Dan Uji Sifat Katalitiknya Pada Reaksi Esterifikasi,” Chemical, vol. 3, no. 1, pp. 20–27, 2017, doi: 10.20885/ijcr.vol2.iss1.art3.

W. Trisunaryanti, E. Triwahyuni, and S. Sudiono, “PREPARATION, CHARACTERIZATIONS AND MODIFICATION OF Ni-Pd/NATURAL ZEOLITE CATALYSTS,” Indones. J. Chem., vol. 5, no. 1, pp. 48–53, 2005, doi: 10.22146/ijc.21838.

A. Al-khawlani et al., “Enhanced catalytic activity and high stability of treated Pt-Ru/ zeolite Y catalysts for levulinic acid hydrogenation reaction,” Catal. Commun., vol. 183, 2023, doi: 10.1016/j.catcom.2023.106761.

D. Spataru et al., “International Journal of Hydrogen Energy Doping Ni / USY zeolite catalysts with transition metals for CO2 methanation,” vol. 53, no. October 2023, pp. 468–481, 2024, doi: 10.1016/j.ijhydene.2023.12.045.

S. Xu et al., “Highly efficient Cr/Β zeolite catalyst for conversion of carbohydrates into 5‑hydroxymethylfurfural: Characterization and performance,” Fuel Process. Technol., vol. 190, pp. 38–46, 2019, doi: 10.1016/j.fuproc.2019.03.012.

I. M. S. Anekwe, B. Oboirien, and Y. M. Isa, “Effects of transition metal doping on the properties and catalytic performance of ZSM-5 zeolite catalyst on ethanol-to-hydrocarbons conversion,” Fuel Commun., vol. 18, no. December, p. 100101, 2024, doi: 10.1016/j.jfueco.2023.100101.

Nuryoto, A. R. Amaliah, A. Puspitasari, and A. D. Ramadhan, “Study of Esterification Reaction Between Ethanol and Acetic Acid Using Homogeneous and Heterogeneous Catalyst,” World Chem. Eng. J., vol. 4, no. 2, p. 51, 2020, doi: 10.48181/wcej.v4i2.8952.

Nuryoto, H. Sulistyo, W. B. Sediawan, and I. Perdana, “Modifikasi Zeolit Alam Mordenit Sebagai Katalisator Ketalisasi dan Esterifikasi,” Reaktor, vol. 16, no. 2, pp. 72–80, 2016.

T. Nasution, A. M. Pulungan, Y. A. Wiliranti, J. L. Sihombing, and A. N. Pulungan, “Synthesis of Biodiesel From Rubber Seed Oil with Acid and Base Activated Natural Zeolite Catalyst,” Indones. J. Chem. Sci. Techonology, vol. 02, no. 2, pp. 125–130, 2019.

C. A. Susiana, B. Rusdiarso, and M. Mudasir, “Enhanced Capacity and Easily Separable Adsorbent of Dithizone-immobilized Magnetite Zeolite for Pb(II) Adsorption,” Indones. J. Chem., vol. 24, no. 4, pp. 1058–1070, 2024, doi: 10.22146/ijc.90914.

R. N. Yanti, E. Hambali, G. Pari, and A. Suryani, “Analisis Karakteristik Fungsi Zeolit Alam Aktif Sebagai Katalis Setelah Diimpregnasi Logam Nikel,” J. Penelit. Has. Hutan, vol. 39, no. 3, pp. 138–147, 2021, doi: 10.20886/jphh.2021.39.3.138-147.

P. D. Anghistra, Pardoyo, and A. Subagio, “Modifikasi Zeolit Alam dengan Mn pada Pengaruh Asam dan High Energy Milling,” Greensph. J. Environ. Chem. Orig., vol. 3, no. 2, pp. 1–5, 2023.

M. Faisal, Suhartana, and Pardoyo, “Zeolit Alam Termodifikasi Logam Fe sebagai Adsorben Fosfat (PO4 3-) pada Air Limbah,” J. Kim. Sains dan Apl., vol. 18, no. 3, pp. 91–95, 2015.

H. Aloulou, H. Bouhamed, A. Ghorbel, R. Ben Amar, and S. Khemakhem, “Elaboration and characterization of ceramic microfiltration membranes from natural zeolite: Application to the treatment of cuttlefish effluents,” Desalin. Water Treat., vol. 95, no. August, pp. 9–17, 2017, doi: 10.5004/dwt.2017.21348.

A. Mustain, G. Wibawa, M. F. Nais, and M. Falah, “Synthesis of Zeolite NaA from Low Grade (High Impurities) Indonesian Natural Zeolite,” Indones. J. Chem., vol. 14, no. 2, pp. 138–142, 2014, doi: 10.22146/ijc.21250.

M. Ali, “Qualitative analyses of thin film-based materials validating new structures of atoms,” Mater. Today Commun., vol. 36, no. May, 2023, doi: 10.1016/j.mtcomm.2023.106552.

F. W. Chang, M. S. Kuo, M. T. Tsay, and M. C. Hsieh, “Hydrogenation of CO2 over nickel catalysts on rice husk ash-alumina prepared by incipient wetness impregnation,” Appl. Catal. A Gen., vol. 247, no. 2, pp. 309–320, 2003, doi: 10.1016/S0926-860X(03)00181-9.

S. Hajimirzaee, A. Soleimani Mehr, and E. Kianfar, “Modified ZSM-5 Zeolite for Conversion of LPG to Aromatics,” Polycycl. Aromat. Compd., vol. 42, no. 5, pp. 2334–2347, 2020, doi: 10.1080/10406638.2020.1833048.

P. Pardoyo, Y. Astuti, G. Herinnayah, S. Suhartana, and P. J. Wibawa, “The influence of high energy milling to the adsorption of Cd(II) and Zn(II) ions on activated zeolite,” J. Phys. Conf. Ser., vol. 1524, no. 1, 2020, doi: 10.1088/1742-6596/1524/1/012080.

F. Fadliah, C. Palit, R. Pratiwi, R. Aryanto, and T. W. Putri, “Analysis the Effect of Activated Natural Zeolites for Fe Metal Adsorption,” Walisongo J. Chem., vol. 6, no. 2, pp. 143–148, 2023, doi: 10.21580/wjc.v6i2.17291.

W. Trisunaryanti, R. Shiba, M. Miura, M. Nomura, N. Nishiyama, and M. Matsukata, “Characterization and modification of Indonesian natural zeolites and their properties for hydrocracking of a paraffin,” Sekiyu Gakkaishi (Journal Japan Pet. Institute), vol. 39, no. 1, pp. 20–25, 1996, doi: 10.1627/jpi1958.39.20.

N. Otandi, “Effect of Catalyst Concentration on Reaction Rate in Organic Synthesis in Kenya,” J. Chem., vol. 3, no. 2, pp. 1–11, 2024, doi: 10.47672/jchem.2401.

Diterbitkan

2025-07-06

Cara Mengutip

[1]
A. N. R. Nugroho, T. Pambudi, Alfieta Rohmaful Aeni, dan Retno Utami, “The Catalytic Performance of MnSO4-Doped Natural Zeolite in Ethyl Acetate Synthesis”, He: JSAC, vol. 5, no. 1, hlm. 29–37, Jul 2025.