The Effect of pH on Adsorption Capacity Based on the Ionic Imprinted Polymer-Cd(II) Method
DOI:
https://doi.org/10.33751/helium.v5i2.16Keywords:
Adsorption, Cadmium, IIP, Optimum pH, Precipitation polymerizationAbstract
Population growth and technological advancement in Indonesia have contributed to increasing environmental pollution, particularly from industrial waste containing heavy metals such as cadmium (Cd²⁺). This pollution poses serious health risks as cadmium can enter the food chain through aquatic ecosystems. Therefore, effective separation methods are required to remove cadmium from water bodies. One such method is the use of Ionic Imprinted Polymer (IIP), which offers high selectivity toward specific metal ions. This study aimed to determine the adsorption capacity of cadmium using the IIP method, synthesized via precipitation polymerization, over pH values ranging from 3 to 8. CdCl₂ was used as the ion template, combined with Na₂EDTA as a chelating ligand, methacrylic acid (MAA) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the crosslinker, and benzoyl peroxide (BPO) as the initiator. Characterization was conducted using Fourier Transform Infrared Spectroscopy (FTIR) to identify the functional groups and confirm template removal, and Scanning Electron Microscopy (SEM) to observe surface morphology. Adsorption performance was tested using Atomic Absorption Spectrophotometry (AAS). The IIP showed a specific absorption at 520 cm⁻¹ (Cd–O stretch), confirming the presence of cadmium-binding sites, and exhibited a porous morphology, unlike the dense structure of the blank polymer. The results showed that the optimum adsorption of Cd²⁺ occurred at pH 6, with an adsorption capacity of 4.47 mg/g, which was higher than that of the non-imprinted polymer (3.08 mg/g at pH 4). The improved adsorption performance at pH 6 is attributed to the predominance of the deprotonated EDTA form (Y⁴⁻), which forms a stable complex with Cd²⁺ (Kf ≈ 10¹⁶.⁵), thereby enhancing selective adsorption. These findings confirm that IIP-Cd is an effective material for cadmium removal from aqueous environments, with pH playing a critical role in optimizing adsorption capacity.
References
Bhawna M, Kirandeep KS., 2023, Occurrence and Impact of Heavy Metals on the Environment. Materials Today: Proceedings.
Lestari, P.D., 2019, The Impact of Improper Solid Waste Management on Plastic Pollution in the Indonesian Coast and Marine Environment. Marine Pollution Bulletin, 149.
Yuniar F., 2020, Karakterisasi Dan Uji Toleransi Kadmium Pada Isolat Bakteri Pereduksi Sulfat Dari Air Asam Tambang. Universitas Hasanuddin.
Yudistirani SA., 2022, Penentuan pH Optimum Adsorbat Dalam Pemanfaatan Tanaman Alang-Alang Sebagai Bioadsorben Logam Berat Cd(II) Pada Limbah Cat Industri. Konversi, 23.
Prayitno., 2007, Pemisahan Kadmium Dalam Limbah Cair Industri Percetakan Dengan Sistem Elektromagnetik Plating. Prosiding Ppi-Pdiptn, 107-114.
Sugiharto SB., Suwarso S., Prawirohardjono W., 2016, Efek cadmium pada pekerja las bengkel level kadmium darah dan fungsi ginjal ditinjau dari kadar ureum dan kreatinin pekerja las bengkel knalpot di Purbalingga. Berita Kedokteran Masyarakat, 32 (4):119
Nugrayani D., 2023, Potensi Resiko Ekologis Logam Berat (Cd, Cr, Fe) Pada Sedimen Anak Sungai Pelus Sekitar Home Industry Batik Kauman Sokaraja, Banyumas. Journal Perikanan, 796.
Viviana N., 2023, Synthesis and Characterization of Adsorbent Materials: Magnetite. Jurnal Riset Kimia, 209-218.
Kumar PK., 2019, Penghapusan Kadmium (Cd-II) Dari Larutan Berair Menggunakan Adsorben Berbasis Industri Gas. Aplikasi Sn. Sains 1, 365
Murat AW., 2022, Preparation, Characterization of Cd(II) Ion-Imprinted Microsphere and Its Selectivity for Template Ion. Coatings, 12(8).
Kubier AWR., 2019, Cadmium in Soils and Groundwater: A Review. Appl Geochem, 1-16.
Sa'adah S., 2018, Pengaruh Konsentrasi Na2EDTA Terhadap Desorpsi Ce(IV) Pada Adsorben Kitosan-Karbon. Jurnal Kimia Khatulistiwa.
Gkika DA., 2024, Application of Molecularly Imprinted Polymers (MIPs) As Environmental Separation Tools. Royal Society of Chemistry, 127-148.
Xie LX., 2020, Theoretical Insight into The Interaction Between Chloramphenicol and Functional Monomer (Methacrylic Acid) In Molecularly Imprinted Polymers. International Journal of Molecular Sciences, 21 (11):4139.
Kusumkar, V. V., M. Galambos, E. Viglasov, and M. Da. 2021. “Ion-Imprinted Polymers: Synthesis, Characterization and Adsorption of Radionuclides”. Journal of Materials. Vol 14(1082): 1-29.
Asni N K., 2020, Pengaruh Jumlah Crosslinker Terhadap Persen Ekstraksi Pada Sintesis Molecularly Imprinted Polymer Sebagai Adsorben Untuk Kloramfenikol. Unesa Journal of Chemistry.
Pahlawan RY., 2021 Synthesis and Characterization of Ion Imprinted Polymer for Selective Separation of Cd(II). AIP Conference Proceedings.
Hidayati H., 2016, Adsorpsi Zat Warna Remazol Brilliant Blue R Menggunakan Nata De Coco : Optimasi Dosis Adsorben Dan Waktu Kontak. J. Sains Dan Seni Its.
Wirawan T., Supriyanto G., Soegianto A., 2019, "Preparation of a New Cd(II)-Imprinted Polymer and Its Application to Preconcentration and Determination of Cd(II) Ion from Aqueous Solution by SPE-FAAS". Indones. J. Chem, 19 (1): 97 – 105.
Jethva H., 2015, FTIR Spectroscopic and XRD Analysis of Gel-Grown, Cadmium Levo-Tartrate Crystals. International Journal of Applied Research, 1-3.
Wang, J., Zhang, L., Li, Y., & Chen, Z. (2020). Morphology-controlled synthesis of ion-imprinted polymers for selective removal of heavy metal ions: A review. Journal of Hazardous Materials, 388, 121778.
Ammar, H., El-Shamy, A. M., & Mostafa, H. A. (2022). Surface Morphology and Performance of Cd(II) Ion-Imprinted Polymers for Wastewater Treatment Applications. Environmental Nanotechnology, Monitoring & Management, 18, 100741.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Helium: Journal of Science and Applied Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.











