Electrochemical Oxidation of Methylene Blue Using Carbon Electrode from Battery Waste
DOI:
https://doi.org/10.33751/helium.v4i2.4Keywords:
methylene blue, electrochemical, oxidationAbstract
Methylene blue in the environment can disrupt the ecosystem because it does not decompose easily. Therefore, this research aims to oxidize methylene blue using an electrochemical oxidation method. The electrochemical oxidation of methylene blue was successfully carried out using carbon electrodes from battery waste. The influence of pH value and electrolysis time was successfully investigated using a UV-Vis spectrophotometer, and the decreased absorbance (DA(%)) was also analyzed. Based on the results, the optimum pH for electrochemical oxidation with a carbon electrode is at pH 1. It was possible to reduce the absorbance at this pH with a decreased absorbance of 56%. There was a decrease in absorption in the UV and visible regions. The optimum time for methylene blue electrochemical oxidation was 15 minutes, with a decreased absorbance percentage at 100%. The electrochemical oxidation method is simple and easy to use. This finding can be an excellent and effective wastewater treatment method.
References
Shokoohi, R., Salari, M., Shabanloo, A., Shabanloo, N., Marofi, S., et al. (2022) Catalytic activation of persulphate with Mn3O4 nanoparticles for degradation of acid blue 113: process optimization and degradation pathway. Int. J. Environ. Anal. Chem., 102(16) 3786–3805, https://doi.org/10.1080/03067319.2020.1773810.
Pratiwi, D. Y. (2020) Dampak Pencemaran Logam Berat (Timbal, Tembaga, Merkuri, Kadmium, Krom) terhadap Organisme Perairan dan Kesehatan Manusia. Akuatek, 1(1) 59–65.
Baddouh, A., Rguiti, M. M., El Ibrahimi, B., Sajjad, H., Errami, M., et al. (2019) Anodic oxidation of methylene blue dye from aqueous solution using sno2 electrode. Iran. J. Chem. Chem. Eng., 38(5) 175–184, https://doi.org/10.30492/IJCCE.2019.34227.
Said, A., Hakim, M. S., Rohyami, Y. (2014) The effect of contact time and pH on methylene blue removal by volcanic ash., in Int’l Conference on Chemical, Biological, and Environmental Sciences, 11–13.
Kuang, Y., Zhang, X., Zhou, S. (2020) Adsorption of Methylene Blue in Water onto Activated Carbon by Surfactant Modification. Water, 12(2) 587, https://doi.org/10.3390/w12020587.
Maheshwari, M., Saraswathi, P. (2020) Photocatalytic degradation of methylene blue and methyl orange from aqueous solution using solar light onto chitosan bi-metal oxide composite. SN Appl. Sci., 2(3) 336, https://doi.org/10.1007/s42452-020-1980-4.
Khan, I., Saeed, K., Zekker, I., Zhang, B., Hendi, A. H., et al. (2022) Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water, 14(2) 242, https://doi.org/10.3390/w14020242.
Hasnat, M. A., Safwan, J. A., Islam, M. S., Rahman, Z., Karim, M. R., et al. (2015) Electrochemical decolorization of Methylene blue at Pt electrode in KCl solution for environmental remediation. J. Ind. Eng. Chem., 21 787–791, https://doi.org/10.1016/j.jiec.2014.04.013.
Mashjel, M. A., Tameemi, H. M. A., Al-Shati, A. S., Mudheher, K. N., Salih, Y. (2023) A review on the removal of methylene blue dye from simulated wastewater by cement kiln dust (CKD)., 040030. https://doi.org/10.1063/5.0161003.
Kasbaji, M., Mennani, M., Boussetta, A., Grimi, N., Barba, F. J., et al. (2023) Bio-adsorption performances of methylene blue (MB) dye on terrestrial and marine natural fibers: Effect of physicochemical properties, kinetic models and thermodynamic parameters. Sep. Sci. Technol., 58(2) 221–240, https://doi.org/10.1080/01496395.2022.2104733.
Daniel, L. S., Rahman, A., Hamushembe, M. N., Kapolo, P., Uahengo, V., et al. (2023) The production of activated carbon from Acacia erioloba seedpods via phosphoric acid activation method for the removal of methylene blue from water. Bioresour. Technol. Reports, 23 101568, https://doi.org/10.1016/j.biteb.2023.101568.
Hanum, F., Gultom, R. J., Simanjuntak, M. (2017) Adsorpsi Zat Warna Metilen Biru dengan Karbon Aktif dari Kulit Durian Menggunakan KOH dan NaOH Sebagai Aktivator. J. Tek. Kim. USU, 6(1) 53.
Salvestrini, S., Fenti, A., Chianese, S., Iovino, P., Musmarra, D. (2020) Electro-Oxidation of Humic Acids Using Platinum Electrodes: An Experimental Approach and Kinetic Modelling. Water, 12(8) 2250, https://doi.org/10.3390/w12082250.
Radjenovic, J., Duinslaeger, N., Avval, S. S., Chaplin, B. P. (2020) Facing the Challenge of Poly- and Perfluoroalkyl Substances in Water: Is Electrochemical Oxidation the Answer?. Environ. Sci. Technol., 54(23) 14815–14829, https://doi.org/10.1021/acs.est.0c06212.
Gunawan, G., Prasetya, N. B. A., Widodo, D. S., Wijaya, R. A. (2023) Electrochemical Degradation of Methylene Blue With Seawater and Pb/PbO2 Electrodes From Battery Waste. Karbala Int. J. Mod. Sci., 9(4) 725–741, https://doi.org/10.33640/2405-609X.3333.
Mawazi, M. (2015) Electrochemical Degradation of Methylene Blue Using Carbon Composite Electrode (C-PVC) in Sodium Chloride. IOSR J. Appl. Chem., 8(11) 31–40, https://doi.org/10.9790/5736-081113140.
Fadillah, G., Saleh, T. A., Wahyuningsih, S., Ninda Karlina Putri, E., Febrianastuti, S. (2019) Electrochemical removal of methylene blue using alginate-modified graphene adsorbents. Chem. Eng. J., 378(May), https://doi.org/10.1016/j.cej.2019.122140.
Fatimah, I., Ramanda, G. D., Sagadevan, S., Suratno, Tamyiz, M., et al. (2024) One-pot synthesis of nickel nanoparticles-embedded biochar and insight on adsorption, catalytic oxidation and photocatalytic oxidation of dye. Case Stud. Chem. Environ. Eng., 10 100767, https://doi.org/10.1016/j.cscee.2024.100767.
Ratautaite, V., Boguzaite, R., Mickeviciute, M. B., Mikoliunaite, L., Samukaite-Bubniene, U., et al. (2021) Evaluation of Electrochromic Properties of Polypyrrole/Poly(Methylene Blue) Layer Doped by Polysaccharides. Sensors, 22(1) 232, https://doi.org/10.3390/s22010232.
Yu, X., Huang, L., Wei, Y., Zhang, J., Zhao, Z., et al. (2015) Controllable preparation, characterization, and performance of Cu2O thin film and photocatalytic degradation of methylene blue using response surface methodology. Mater. Res. Bull., 64 410–417, https://doi.org/10.1016/j.materresbull.2015.01.009.
Dinh, V. P., Huynh, T. D. T., Le, H. M., Nguyen, V. D., Dao, V. A., et al. (2019) Insight into the adsorption mechanisms of methylene blue and chromium(III) from aqueous solution onto pomelo fruit peel. RSC Adv., 9(44) 25847–25860, https://doi.org/10.1039/c9ra04296b.
Fabiańska, A., Białk-Bielińska, A., Stepnowski, P., Stolte, S., Siedlecka, E. M. (2014) Electrochemical degradation of sulfonamides at BDD electrode: Kinetics, reaction pathway and eco-toxicity evaluation. J. Hazard. Mater., 280 579–587, https://doi.org/10.1016/j.jhazmat.2014.08.050.
Guna, D. S. E., Ariyanto, E., Juniar, H. (2019) Purifikasi methyl blue dengan metode elektrokoagulasi proses menggunakan aluminium (al) sebagai plat elektroda. Distilasi, 4(1) 21–30.
Ghalwa, N. M. A., Zaggout, F. R. (2006) Electrodegradation of methylene blue dye in water and wastewater using lead oxide/titanium modified electrode. J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng., 41(10) 2271–2282, https://doi.org/10.1080/10934520600872888.
Tong, Y., Jiang, B., Chen, X., Ren, X., Lu, J., et al. (2022) Synergistic degradation of methylene blue by laser cavitation and activated carbon fiber. Opt. Laser Technol., 155 108417, https://doi.org/10.1016/j.optlastec.2022.108417.
Teng, X., Li, J., Wang, Z., Wei, Z., Chen, C., et al. (2020) Performance and mechanism of methylene blue degradation by an electrochemical process. RSC Adv., 10(41) 24712–24720, https://doi.org/10.1039/d0ra03963b.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Helium: Journal of Science and Applied Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.