Silver Nanoparticles in Point-of-Care Diagnostics: Enhancing Sensitivity, Selectivity, and Future Prospects
DOI:
https://doi.org/10.33751/helium.v5i2.29Keywords:
silver nanoparticle, sensor, point-of-care, biomarkerAbstract
Silver nanoparticles (AgNPs) have emerged as indispensable nanomaterials for point-of-care (POC) medical diagnostics, due to their unique optical, electrical, and chemical properties that enhance sensor sensitivity, selectivity, and stability. This review systematically discusses the fundamental physicochemical characteristics of AgNPs, with emphasis on surface plasmon resonance (SPR) and its role in signal amplification in techniques such as surface-enhanced Raman spectroscopy (SERS), electrochemical biosensors, and immunosensors. Special attention is given to how synthesis strategies, including chemical, physical, and green, affect nanoparticle uniformity, biocompatibility, and functionalization potential. The review also compares surface modification approaches, including polymer coatings for stability, aptamer/antibody conjugation for specificity, and core–shell architectures for fluorescence enhancement, highlighting their impact on biomarker detection in complex biological matrices. By critically analyzing current challenges such as aggregation, oxidation, and nonspecific binding, the paper synthesizes recent advances in antifouling strategies, scalable production, and integration of AgNPs into portable and wearable diagnostic platforms. Unlike previous reviews, this work consolidates developments across synthesis, surface chemistry, and device engineering, and provides a forward-looking perspective on multiparametric and theragnostic applications. Overall, the paper underlines the importance of multidisciplinary collaboration to accelerate the translation of AgNPs-based sensors into clinically viable POC technologies for personalized healthcare and early disease detection.
References
P. B. Luppa, C. Müller, A. Schlichtiger, and H. Schlebusch, “Point-of-care testing (POCT): Current techniques and future perspectives,” TrAC Trends in Analytical Chemistry, vol. 30, no. 6, pp. 887–898, Jun. 2011, doi: 10.1016/j.trac.2011.01.019.
T. K. Bubner et al., “Effectiveness of point‐of‐care testing for therapeutic control of chronic conditions: results from the PoCT in General Practice Trial,” Medical Journal of Australia, vol. 190, no. 11, pp. 624–626, Jun. 2009, doi: 10.5694/j.1326-5377.2009.tb02590.x.
T. Rizos et al., “Point-of-Care International Normalized Ratio Testing Accelerates Thrombolysis in Patients With Acute Ischemic Stroke Using Oral Anticoagulants,” Stroke, vol. 40, no 11, pp. 3547–3551, Nov. 2009, doi: 10.1161/STROKEAHA.109.562769.
S. Manoharan Nair Sudha Kumari and X. Thankappan Suryabai, “Sensing the Future─Frontiers in Biosensors: Exploring Classifications, Principles, and Recent Advances,” ACS Omega, vol. 9, no. 50, pp. 48918–48987, Dec. 2024, doi: 10.1021/acsomega.4c07991.
R. Ellis, P. Kelly, C. Huang, A. Pearlmutter, and E. S. Izmailova, “Sensor Verification and Analytical Validation of Algorithms to Measure Gait and Balance and Pronation/Supination in Healthy Volunteers,” Sensors, vol. 22, no. 16, p. 6275, Aug. 2022, doi: 10.3390/s22166275.
J. C. Goldsack et al., “Verification, analytical validation, and clinical validation (V3): the foundation of determining fit-for-purpose for Biometric Monitoring Technologies (BioMeTs),” NPJ Digit Med, vol. 3, no. 1, p. 55, Apr. 2020, doi: 10.1038/s41746-020-0260-4.
R. Abbas et al., “Silver Nanoparticles: Synthesis, Structure, Properties and Applications,” Nanomaterials, vol. 14, no. 17, p. 1425, Aug. 2024, doi: 10.3390/nano14171425.
J. M. Arroyave, M. E. Centurión, and J. J. Prías-Barragán, “Comparison between electrical and optical properties of Carbon dots, silver nanoparticles and hybrid carbon/silver nanoparticles: Experimental evidence of the interaction of Carbon dots on silver nanoparticles,” Nano-Structures & Nano-Objects, vol. 24, p. 100596, Oct. 2020, doi: 10.1016/j.nanoso.2020.100596.
S. H. Lee and B.-H. Jun, “Silver Nanoparticles: Synthesis and Application for Nanomedicine,” Int J Mol Sci, vol. 20, no. 4, p. 865, Feb. 2019, doi: 10.3390/ijms20040865.
S. Kenmotsu et al., “Surface-Enhanced Raman Scattering on Size-Classified Silver Nanoparticles Generated by Laser Ablation,” ACS Omega, vol. 9, no. 36, pp. 37716–37723, Sep. 2024, doi: 10.1021/acsomega.4c03046.
B. Buszewski, K. Rafiſska, P. Pomastowski, J. Walczak, and A. Rogowska, “Novel aspects of silver nanoparticles functionalization,” Colloids Surf A Physicochem Eng Asp, vol. 506, pp. 170–178, Oct. 2016, doi: 10.1016/j.colsurfa.2016.05.058.
L. Zhang, Y. Mazouzi, M. Salmain, B. Liedberg, and S. Boujday, “Antibody-Gold Nanoparticle Bioconjugates for Biosensors: Synthesis, Characterization and Selected Applications,” Biosens Bioelectron, vol. 165, p. 112370, Oct. 2020, doi: 10.1016/j.bios.2020.112370.
M. Vázquez-González and I. Willner, “Aptamer-Functionalized Hybrid Nanostructures for Sensing, Drug Delivery, Catalysis and Mechanical Applications,” Int J Mol Sci, vol. 22, no. 4, p. 1803, Feb. 2021, doi: 10.3390/ijms22041803.
H. Yoo, H. Jo, and S. S. Oh, “Detection and beyond: challenges and advances in aptamer-based biosensors,” Mater Adv, vol. 1, no. 8, pp. 2663–2687, 2020, doi: 10.1039/D0MA00639D.
S. Feng et al., “Colorimetric detection of creatinine using its specific binding peptides and gold nanoparticles,” New Journal of Chemistry, vol. 44, no. 37, pp. 15828–15835, 2020, doi: 10.1039/D0NJ03860A.
J. Homola and M. Piliarik, “Surface Plasmon Resonance (SPR) Sensors,” 2006, pp. 45–67. doi: 10.1007/5346_014.
W. Wang, Y. You, and S. Gunasekaran, “LSPR‐based colorimetric biosensing for food quality and safety,” Compr Rev Food Sci Food Saf, vol. 20, no. 6, pp. 5829–5855, Nov. 2021, doi: 10.1111/1541-4337.12843.
M. Li, S. K. Cushing, and N. Wu, “Plasmon-enhanced optical sensors: a review,” Analyst, vol. 140, no. 2, pp. 386–406, 2015, doi: 10.1039/C4AN01079E.
K. Kant et al., “Plasmonic nanoparticle sensors: current progress, challenges, and prospects,” Nanoscale Horiz, vol. 9, no. 12, pp. 2085–2166, 2024, doi: 10.1039/D4NH00226A.
A. Loiseau, V. Asila, G. Boitel-Aullen, M. Lam, M. Salmain, and S. Boujday, “Silver-Based Plasmonic Nanoparticles for and Their Use in Biosensing,” Biosensors (Basel), vol. 9, no. 2, p. 78, Jun. 2019, doi: 10.3390/bios9020078.
F. Y. Alzoubi, A. A. Ahmad, I. A. Aljarrah, A. B. Migdadi, and Q. M. Al-Bataineh, “Localize surface plasmon resonance of silver nanoparticles using Mie theory,” Journal of Materials Science: Materials in Electronics, vol. 34, no. 32, p. 2128, Nov. 2023, doi: 10.1007/s10854-023-11304-x.
F. Y. Alzoubi, A. A. Ahmad, I. A. Aljarrah, A. B. Migdadi, and Q. M. Al-Bataineh, “Localize surface plasmon resonance of silver nanoparticles using Mie theory,” Journal of Materials Science: Materials in Electronics, vol. 34, no. 32, p. 2128, Nov. 2023, doi: 10.1007/s10854-023-11304-x.
A. Syafiuddin, Salmiati, M. R. Salim, A. Beng Hong Kueh, T. Hadibarata, and H. Nur, “A Review of Silver Nanoparticles: Research Trends, Global Consumption, Synthesis, Properties, and Future Challenges,” Journal of the Chinese Chemical Society, vol. 64, no. 7, pp. 732–756, Jul. 2017, doi: 10.1002/jccs.. 201700067.
F. Y. Alzoubi, A. A. Ahmad, I. A. Aljarrah, A. B. Migdadi, and Q. M. Al-Bataineh, “Localize surface plasmon resonance of silver nanoparticles using Mie theory,” Journal of Materials Science: Materials in Electronics, vol. 34, no. 32, p. 2128, Nov. 2023, doi: 10.1007/s10854-023-11304-x.
S. Unser, I. Bruzas, J. He, and L. Sagle, “Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches,” Sensors, vol. 15, no. 7, pp. 15684–15716, Jul. 2015, doi: 10.3390/s150715684.
O. A. Yeshchenko, I. S. Bondarchuk, A. A. Alexeenko, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in silver nanoparticles,” Functional Materials, vol. 20, no. 3, pp. 357–365, 2013, doi: 10.15407/fm20.03.357.
O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, and A. O. Pinchuk, “Size and temperature dependence of the surface plasmon resonance in silver nanoparticles,” Ukrainian Journal of Physics, vol. 57, no. 2, pp. 266–277, 2012.
O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, and A. O. Pinchuk, “Size and Temperature Effects on the Surface Plasmon Resonance in Silver Nanoparticles,” Plasmonics, vol. 7, no. 4, pp. 685–694, 2012, doi: 10.1007/s11468-012-9359-z.
L. K. Sørensen et al., “Nature of the Anomalous Size Dependence of Resonance Red Shifts in Ultrafine Plasmonic Nanoparticles,” Journal of Physical Chemistry C, vol. 126, no. 39, pp. 16804–16814, 2022, doi: 10.1021/acs.jpcc.2c03738.
S. Behzadifar, M. Hosseini, J. Mohammadnejad, and M. Asiabanha, “A new colorimetric assay for sensitive detection of glucose-6-phosphate dehydrogenase deficiency based on silver nanoparticles,” Nanotechnology, vol. 33, no. 5, p. 055502, Jan. 2022, doi: 10.1088/1361-6528/ac2fe5.
Y. Yusnaidar, M. Asti Rahayu, and Y. Wulandari, “Synthesis of silver nanoparticles as a reagent for colorimetric detections of creatinine,” Jurnal Pendidikan Kimia, vol. 15, no. 3, pp. 259–265, Dec. 2023, doi: 10.24114/jpkim.v15i3.51216.
U. Nishan et al., “Uric acid quantification via colorimetric detection utilizing silver oxide-modified activated carbon nanoparticles functionalized with ionic liquid,” RSC Adv, vol. 14, no. 10, pp. 7022–7030, 2024, doi: 10.1039/D4RA00659C.
S. Balasurya et al., “Highly sensitive and selective colorimetric detection of arginine by polyvinylpyrrolidone functionalized silver nanoparticles,” J Mol Liq, vol. 300, p. 112361, Feb. 2020, doi: 10.1016/j.molliq.2019.112361.
V. Amendola and M. Meneghetti, “Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles,” Physical Chemistry Chemical Physics, vol. 11, no. 20, p. 3805, 2009, doi: 10.1039/b900654k.
P. Teengam, W. Siangproh, A. Tuantranont, T. Vilaivan, O. Chailapakul, and C. S. Henry, “Multiplex Paper-Based Colorimetric DNA Sensor Using Pyrrolidinyl Peptide Nucleic Acid-Induced AgNPs Aggregation for Detecting MERS-CoV, MTB, and HPV Oligonucleotides,” Anal Chem, vol. 89, no. 10, pp. 5428–5435, May 2017, doi: 10.1021/acs.analchem.7b00255.
S. Akbari Nakhjavani, H. Afsharan, B. Khalilzadeh, M. H. Ghahremani, S. Carrara, and Y. Omidi, “Gold and silver bio/nano-hybrids-based electrochemical immunosensor for ultrasensitive detection of carcinoembryonic antigen,” Biosens Bioelectron, vol. 141, p. 111439, Sep. 2019, doi: 10.1016/j.bios.2019.111439.
J. Li et al., “Ratiometric fluorescence sensors for heparin and heparinase based on enhanced excimer emission of perylene probe induced by cationic silver nanoparticles,” Sens Actuators B Chem, vol. 305, p. 127422, Feb. 2020, doi: 10.1016/j.snb.2019.127422.
Y. Jeong, Y.-M. Kook, K. Lee, and W.-G. Koh, “Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments,” Biosens Bioelectron, vol. 111, pp. 102–116, Jul. 2018, doi: 10.1016/j.bios.2018.04.007.
Z. Zhang and P.-C. Lin, “Noble metal nanoparticles: synthesis, and biomedical implementations,” in Emerging Applications of Nanoparticles and Architecture Nanostructures, Elsevier, 2018, pp. 177–233. doi: 10.1016/B978-0-323-51254-1.00007-5.
R. P. Potdar, Y. B. Khollam, Shoyebmohamad. F. Shaikh, P. S. More, and A. ul H. S. Rana, “Polyvinylpyrrolidone-Capped Silver Nanoparticles for Highly Sensitive and Selective Optical Fiber-Based Ammonium Sensor,” Nanomaterials, vol. 12, no. 19, p. 3373, Sep. 2022, doi: 10.3390/nano12193373.
M. Zahran, S. Mohammed, M. A.-H. Zahran, and M. A. Azzem, “Chitosan-Capped Silver Nanoparticles for the Electrochemical Detection of Congo Red in River Water Samples,” J Electrochem Soc, vol. 172, no. 4, p. 047505, Apr. 2025, doi: 10.1149/1945-7111/adc8db.
P. Sharma, Mohd. R. Hasan, U. M. Naikoo, S. Khatoon, R. Pilloton, and J. Narang, “Aptamer Based on Silver Nanoparticle-Modified Flexible Carbon Ink Printed Electrode for the Electrochemical Detection of Chikungunya Virus,” Biosensors (Basel), vol. 14, no. 7, p. 344, Jul. 2024, doi: 10.3390/bios14070344.
M. Retout, B. Gosselin, A. Mattiuzzi, I. Ternad, I. Jabin, and G. Bruylants, “Peptide‐Conjugated Silver Nanoparticles for the Colorimetric Detection of the Oncoprotein Mdm2 in Human Serum,” ChemPlusChem, vol. 87, no. 4, Apr. 2022, doi: 10.1002/cplu. 202100450.
H. V. Tran et al., “Silver nanoparticles-decorated reduced graphene oxide: A novel peroxidase-like activity nanomaterial for development of a colorimetric glucose biosensor,” Arabian Journal of Chemistry, vol. 13, no. 7, pp. 6084–6091, Jul. 2020, doi: 10.1016/j.arabjc.2020.05.008.
A. Parveen and S. Rao, Synthesis of silver nanoparticles from plants and their applications. 2016. doi: 10.1007/978-981-10-1917-3_19.
S. Suri et al., “Comprehensive Physical Characterization of Silver Nanoparticles: Multimodal Evaluation of Material Properties,” in E3s Web of Conferences, 2024. doi: 10.1051/e3sconf/202458801009.
I. Cǎlinescu, M. Pǎtraşcu, A. I. Gavrilǎ, A. Trifan, and C. Boscornea, “Synthesis and characterisation of silver nanoparticles in the presence of PVA and Tannic acid,” UPB Scientific Bulletin Series B Chemistry and Materials Science, vol. 73, no. 4, pp. 3–10, 2011.
A. N. Alfalahi, S. M. Matalqah, R. Issa, H. I. Al-Daghistani, and A. Abed, “Evaluation of Cytotoxicity and Antibacterial Activity of Green Synthesized Silver Nanoparticles using Hedera helix extract,” Jordan Journal of Pharmaceutical Sciences, vol. 18, no. 2, pp. 524–537, 2025, doi: 10.35516/jjps.v18i2.2620.
Y. Sun, Y. Liu, G. Zhao, X. Zhou, J. Gao, and Q. Zhang, “Preparation of pH-responsive silver nanoparticles by RAFT polymerization,” J Mater Sci, vol. 43, no. 13, pp. 4625–4630, 2008, doi: 10.1007/s10853-008-2671-5.
Y. N. Ardesana, R. Ajudia, D. Patel, and N. Srinivas, “Synthesis of silver nanoparticles from neem and cow dung, their characterization, and their application as a nano pesticide and nano fertilizer,” in E3s Web of Conferences, 2025. doi: 10.1051/e3sconf/202561904002.
D. M. T. Dang, C. M. Dang, and E. Fribourg-Blanc, “Study of the formation of silver nanoparticles and silver nanoplates by chemical reduction method,” Int J Nanotechnol, vol. 12, no. 5–7, pp. 456–465, 2015, doi: 10.1504/IJNT.2015.067903.
R. K. Dubey, S. Shukla, and Z. Hussain, “Green Synthesis of Silver Nanoparticles; A Sustainable Approach with Diverse Applications,” Zhongguo Ying Yong Sheng Li Xue Za Zhi, vol. 39, p. e20230007, 2023, doi: 10.62958/j.cjap.2023.007.
V. Rojas Martínez, E. Lee, and J.-W. Oh, “Exploring Plasmonic Standalone Surface-Enhanced Raman Scattering Nanoprobes for Multifaceted Applications in Biomedical, Food, and Environmental Fields,” Nanomaterials, vol. 14, no. 22, p. 1839, Nov. 2024, doi: 10.3390/nano14221839.
A. R. Jalalvand and M. M. Karami, “Roles of nanotechnology in electrochemical sensors for medical diagnostic purposes: A review,” Sens Biosensing Res, vol. 47, p. 100733, Feb. 2025, doi: 10.1016/j.sbsr.2024.100733.
O. E. Eremina et al., “Silver nanoparticle-based SERS sensors for sensitive detection of amyloid-β aggregates in biological fluids,” Talanta, vol. 266, p. 124970, Jan. 2024, doi: 10.1016/j.talanta.2023.124970.
A. Kundu et al., “Ultrasensitive and label-free detection of prognostic and diagnostic biomarkers of sepsis on an AgNP-laden black phosphorous-based SERS platform,” Sensors & Diagnostics, vol. 1, no. 3, pp. 449–459, 2022, doi: 10.1039/D1SD00057H.
E. Farjami, R. Campos, J. S. Nielsen, K. V. Gothelf, J. Kjems, and E. E. Ferapontova, “RNA Aptamer-Based Electrochemical Biosensor for Selective and Label-Free Analysis of Dopamine,” Anal Chem, vol. 85, no. 1, pp. 121–128, Jan. 2013, doi: 10.1021/ac302134s.
Y. Mu, Z. Chen, J. Zhan, and J. Zhang, “Recent Advances in Aptamer‐Based Sensors for In Vitro Detection of Small Molecules,” Analysis & Sensing, vol. 4, no. 6, Nov. 2024, doi: 10.1002/anse. 202400027.
D. Alromi, S. Madani, and A. Seifalian, “Emerging Application of Magnetic Nanoparticles for Diagnosis and Treatment of Cancer,” Polymers (Basel), vol. 13, no. 23, p. 4146, Nov. 2021, doi: 10.3390/polym13234146.
F. O. Kirbay, İ. Yazgan, and D. Odaci, “Development of a sugar-derived silver nanoparticle-based electrochemical immunosensor for sensitive D-dimer detection,” Sensors International, vol. 6, p. 100332, 2025, doi: 10.1016/j.sintl.2025.100332.
F. G. Ortega, M. A. Fernández-Baldo, M. J. Serrano, G. A. Messina, J. A. Lorente, and J. Raba, “Epithelial cancer biomarker EpCAM determination in peripheral blood samples using a microfluidic immunosensor based on silver nanoparticles as platform,” Sens Actuators B Chem, vol. 221, pp. 248–256, Dec. 2015, doi: 10.1016/j.snb.2015.06.066.
S. Singhal, S. Mandal, and A. Gupta, “Amplifying Proline Colorimetric Detection: A Frugal Approach for Paper-based Biosensor,” in 2023 16th International Conference on Sensing Technology (ICST), IEEE, Dec. 2023, pp. 1–5. doi: 10.1109/ICST59744.2023.10460780.
P. Gupta, K. Mishra, A. K. Mittal, N. Handa, and M. K. Paul, “Current Expansion of Silver and Gold Nanomaterials towards Cancer Theranostics: Development of Therapeutics,” Curr Nanosci, vol. 20, no. 3, pp. 356–372, May 2024, doi: 10.2174/1573413719666230503144904.
Y. Li, Y. Zhang, L. Jiang, P. K. Chu, Y. Dong, and P. Wang, “An electrochemical immunosensor comprising thionin/silver nanoparticles decorated KIT-6 for ultrasensitive detection of squamous cell carcinoma antigen,” RSC Adv, vol. 6, no. 9, pp. 6932–6938, 2016, doi: 10.1039/C5RA26142B.
G. Han et al., “Highly sensitive electrochemical sensor based on xylan-based Ag@CQDs-rGO nanocomposite for dopamine detection,” Appl Surf Sci, vol. 541, p. 148566, Mar. 2021, doi: 10.1016/j.apsusc.2020.148566.
F. Beck, M. Loessl, and A. J. Baeumner, “Signaling strategies of silver nanoparticles in optical and electrochemical biosensors: considering their potential for the point-of-care,” Microchimica Acta, vol. 190, no. 3, p. 91, Mar. 2023, doi: 10.1007/s00604-023-05666-6.
Z. Li, S. C. B. Gopinath, T. Lakshmipriya, P. Anbu, V. Perumal, and X. Wang, “Self-assembled silver nanoparticle-DNA on a dielectrode microdevice for determination of gynecologic tumors,” Biomed Microdevices, vol. 22, no. 4, p. 67, Dec. 2020, doi: 10.1007/s10544-020-00522-3.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Helium: Journal of Science and Applied Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.











