Migration of Bisphenol A from Canned Sardines into Food Simulants: Effect of Temperature and Concentration

Authors

  • Alfin Ghanesa Putra Study Program of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Pakuan, Indonesia
  • Sutanto Sutanto Study Program of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Pakuan, Indonesia
  • Muhammad Fathurrahman Study Program of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Pakuan, Indonesia

DOI:

https://doi.org/10.33751/helium.v5i2.25

Keywords:

Sardine cans, BPA Migration, Food Simulants, Temperature and Concentration

Abstract

Epoxy resin coatings containing Bisphenol A (BPA) are widely used in canned food packaging, including sardine cans. They may pose a risk of chemical migration into food products under specific conditions. This study aimed to evaluate BPA migration into food simulants, acetic acid (1%, 3%, and 10%) and ethanol (10%, 20%, and 50%), at three temperatures (60 °C, 100 °C, and 121 °C). Migration levels were quantified using High-Performance Liquid Chromatography (HPLC) with UV-Vis detection. Preliminary analysis of five sardine can brands revealed BPA concentrations ranging from 0.0052 to 0.0487 mg/kg. Results demonstrated a significant increase in BPA migration with both simulant concentration and temperature. In ethanol, migration increased by 437% when the concentration rose from 10% to 50% at 121 °C, while a 92% increase was observed in acetic acid from 1% to 10% under the same conditions. Temperature had a more pronounced effect: BPA migration in 20% ethanol rose by 3,714% between 60 °C and 121 °C. Migration in 3% acetic acid increased from undetectable to 0.1515 mg/kg across the same temperature range. These findings indicate that BPA migration is significantly influenced by simulant type, concentration, and temperature, underscoring the necessity for stringent control over packaging conditions to ensure food safety.

References

I. N. Sucipta, K. Suriasih, and P. K. D. Kencana, Pengemasan Pangan. 2017.

R. Syarief, S. Santausa, and S. T. Isyana, Teknologi pengemasan pangan. Laboratorium Rekayasa Proses Pangan, PAU Pangan dan Gizi, IPB, 1989.

F. G. Winarno, Pangan: Gizi, teknologi dan konsumen. Gramedia Pustaka Utama, 2005.

A. Bakhori, “TINJAUAN ASPEK KOROSI PADA MAKANAN DALAM KEMASAN KALENG.”

J. Michałowicz, “Bisphenol A - Sources, toxicity and biotransformation,” 2014, Elsevier. doi: 10.1016/j.etap.2014.02.003.

M. F. Manzoor et al., “An insight into bisphenol A, food exposure and its adverse effects on health: A review,” Nov. 03, 2022, Frontiers Media S.A. doi: 10.3389/fnut.2022.1047827.

Y. Wang, R. Aimuzi, M. Nian, Y. Zhang, K. Luo, and J. Zhang, “Bisphenol A substitutes and sex hormones in children and adolescents,” Chemosphere, vol. 278, Sep. 2021, doi: 10.1016/j.chemosphere.2021.130396.

Peter KTO and Nehring U, Packaging Material 7. Metal Packaging for Foodstuffs, 7th ed., vol. 7. 2007.

R. J. Romano, M. Schmidt, S. Driscoh, and E. Revnaud, “HIGH PERFORMANCE BISPHENOL A (BPA) FREE EPOXY RESINS,” 2012.

H. H. Kurniawan and E. D. Pusfitasari, “Uji kualitatif bisphenol a dan diethylhexyl phthalate menggunakan teknik gc/ms berdasarkan perhitungan isotop rasio dan indeks retensi,” Universitas Negeri Yogyakarta, Yogyakarta, 2017.

D. Hariyadi, M. Rizal Damanik, dan Ikeu Ekayanti, J. Gizi Politeknik Kesehatan Pontianak, and K. Kesehatan Republik Indonesia, “ANALISIS HUBUNGAN PENERAPAN PESAN GIZI SEIMBANG KELUARGA DAN PERILAKU KELUARGA SADAR GIZI DENGAN STATUS GIZI BALITA DI PROVINSI KALIMANTAN BARAT,” 2010.

S. Almeida, A. Raposo, M. Almeida-González, and C. Carrascosa, “Bisphenol A: Food Exposure and Impact on Human Health,” Compr Rev Food Sci Food Saf, vol. 17, no. 6, pp. 1503–1517, Nov. 2018, doi: 10.1111/1541-4337.12388.

Y. Ma et al., “The adverse health effects of bisphenol A and related toxicity mechanisms,” Sep. 01, 2019, Academic Press Inc. doi: 10.1016/j.envres.2019.108575.

N. E. Suyatma, S. Chasfila, and P. E. Giriwono, “Estimasi Risiko Migrasi Bisfenol A (BPA) Dari Kemasan Logam Pangan Olahan Di Indonesia,” Jurnal Keteknikan Pertanian, vol. 11, no. 2, pp. 253–267, Sep. 2023, doi: 10.19028/jtep.011.2.253-267.

A. Krivohlavek et al., “Migration of BPA from Food Packaging and Household Products on the Croatian Market,” Int J Environ Res Public Health, vol. 20, no. 4, Feb. 2023, doi: 10.3390/ijerph20042877.

P. Cao et al., “Exposure to bisphenol A and its substitutes, bisphenol F and bisphenol S from canned foods and beverages on Chinese market,” Food Control, vol. 120, Feb. 2021, doi: 10.1016/j.foodcont.2020.107502.

C. Stärker and F. Welle, “Migration of bisphenol A from can coatings into beverages at the end of shelf life compared to regulated test conditions,” Beverages, vol. 5, no. 1, Mar. 2019, doi: 10.3390/beverages5010003.

W. M. Haynes, CRC handbook of chemistry and physics. CRC Press. 2016.

P. Panagopoulos et al., “Effects of endocrine disrupting compounds on female fertility,” Best Pract Res Clin Obstet Gynaecol, vol. 88, p. 102347, Jun. 2023, doi: 10.1016/j.bpobgyn.2023.102347.

M. Juric, R. Franz, and F. Welle, “Determination of Diffusion Coefficients of Bisphenol A (BPA) in Polyethylene Terephthalate (PET) to Estimate Migration of BPA from Recycled PET into Foods,” Applied Sciences (Switzerland), vol. 14, no. 17, Sep. 2024, doi: 10.3390/app14177704.

L. Castle, An introduction to chemical migration from food contact materials. International Food Safety News, 9th ed., vol. 9. 2000.

Downloads

Published

01-12-2025

How to Cite

[1]
A. G. Putra, S. Sutanto, and M. Fathurrahman, “Migration of Bisphenol A from Canned Sardines into Food Simulants: Effect of Temperature and Concentration”, He: JSAC, vol. 5, no. 2, pp. 70–76, Dec. 2025.