Optimization of Bacterial Cellulose-Quercetin Biocomposite Synthesis Using The Ex-Situ Method and Its Application as an Antibacterial Agent

Authors

  • Riza Apriani Department of Chemistry, Faculty of Mathematics and Natural Sciences, Garut University, Indonesia.
  • Gania Ningsih Noer Fajrianti Department of Chemistry, Faculty of Mathematics and Natural Sciences, Garut University, Indonesia.

DOI:

https://doi.org/10.33751/helium.v5i1.14

Keywords:

Bacterial cellulose, Quercetin, Antibacterial activity

Abstract

Bacterial cellulose is a natural polymer synthesized by bacteria, possessing significant potential for biomedical and pharmaceutical applications. However, it lacks inherent antibacterial properties, necessitating modification with additional materials. Quercetin, a flavonoid compound, is known for its pharmacological activities, including antibacterial effects by disrupting bacterial cell walls. This study aims to identify the antibacterial activity of bacterial cellulose-quercetin biocomposite by optimizing the concentration and modification time, and to characterize their functional groups. Bacterial cellulose was modified using an ex-situ method by immersing it in quercetin solution. Antibacterial testing was performed using the disk diffusion method against Staphylococcus aureus and Escherichia coli.  Results indicated that the optimal bacterial cellulose-quercetin biocomposite was achieved at a concentration of 6% with a modification time of 48 hours, showing excellent antibacterial properties with inhibition zones of 18.5 mm for S. aureus and 18 mm for E. coli. FTIR analysis confirmed the main functional groups of cellulose (O-H, C-H, and C-O-C glycosidic bonds) in both bacterial cellulose and the composite, showing no significant changes after immersion in distilled water. This suggests that quercetin binds strongly to the bacterial cellulose matrix, resulting in a stable biocomposite with potential as an effective antibacterial material, such as for wound healing.

References

Zhang H., Ling X., Cao X., Wang Y., Wang J., Zhao Y., 2024, Developing natural polymers for skin wound healing, Bioactive Materials., 33 (1): 355-376, doi: 10.1016/j.bioactmat.2023.11.012.

Hodel KVS., Machado BAS., Sacramento GDC., Maciel CADO., Oliviera-Junior GS., Matos BN., Gelfuso GM., Nunes SB., Barbosa JDV., Godoy ALPC., 2022, Active Potential of Bacterial cellulose-based wound dressing: analysis of its potential for dermal lesion treatment, Pharmaceutics, 14 (6): 1-31, doi: 10.3390/pharmaceutics14061222.

Lahiri D., Nag M., Dutta B., Dey A., Sarkar T., Pati S., Edinur HA., Kari ZA., Noor NHM., Ray RR., 2021, Bacterial cellulose: production, characterization, and application as antimicrobial agent, International Journal of Molecular Sciences, 22 (23): 1-18, doi: 10.3390/ijms222312984.

Wibowo NA., Isroi., 2015, Potensi in-vivo selulosa bakterial sebagai nano-filler karet Elastomer Thermoplastics (ETPS), Perspektif, 12 (2): 103-112, doi: 10.21082/pv14n2.2015.103-112.

Portela R., Leal CR., Almeida PL., Sobral RG., 2019, Bacterial cellulose: a versatile biopolymer for wound dressing applications, Microbial Biotechnology, 12 (4): 585-610, doi: 10.1111/1751-7915.13392.

Fatima A., Yasir S., Khan MS., Manan S., Ullah MW., Ul-Islam M., 2021, Plant extract-loaded bacterial cellulose composite membrane for potential biomedical applications, Journal of Bioresources and Bioproducts, 6 (1): 26-32, doi 10.1016/j.jobab.2020.11.002.

Horue M., Silva JM., Berti IR., Brandão LR., Barud HDS., Castro GR., 2023, Bacterial cellulose-based material as dressings for wound healing, Pharmaceutics, 15 (2): 1-26, doi: 10.3390/pharmaceutics15020424.

Volova TG., Prudnikova SV., Kiselev EG., Nemtsev IV., Vasiliev AD., Kuzmin AP., Shishatskaya EI., 2022, Bacterial Cellulose (BC) and BC composite: production and properties, Nanomaterials, 12 (2): 1-24, doi: 10.3390/nano12020192.

Shah N., Ul-Islam M., Khattak WA., Park JK., 2013, Overview of bacterial cellulose composites: a multipurpose advanced material, Carbohydrates Polymers, 98 (2): 1585-1598, doi: 10.1016/j.carbpol.2013.08.018.

Zulkefli N., Zahari CNMC., Sayuti NH., Kamarudin AA., Saad N., Hamezah HS., Bunaawan H., Baharum SN., Mediani A., Ahmed QU., Ismail AFH., Sarian MN., 2023, Flavonoids as potential wound-healing molecules: emphasis on pathways perspective, International Journal of Molecular Sciences, 24 (5): 1-29, doi: 10.3390/ijms24054607.

Nguyen TLA., Bhattacharya D., 2022, Antimicrobial activity of quercetin: an approach to its mechanistic principle, Molecules, 27 (8): 1-13, doi: 10.3390/molecules27082494.

David Alexander VA., Arulmoli R., Parasuraman S., 2016, Overviews of biological importance of quercetin: a bioactive flavonoid, Pharmacognos Reviews, 10: 84-89, doi: 10.4103/0973-7847.194044.

Adeyemi OS., Ebugosi C., Akpor OB., Hetta HF., Al-Rashed S., Otohinoyi DA., Rotimi D., Owalabi A., Evbuomwan IO., Batiha GE., 2020, Quercetin caused redox hemostasis imbalance and activated the kynurenine pathway, Biology, 9 (219): 1-19, doi: 10.3390/biology9080219.

Elumalai S., Soundararajan S., Kanagaraj P., Sadhasivan DP., 2022, In vitro antioxidant and antibacterial activity of quercetin isolated from indigofera aspalathoides and quercetin-zinc matal complex, International Journal of Health Sciences, 6 (S3): 4341-4326, doi: 10.53730/ijhsv6nS3.6859.

Uskoković-Marković S., Milenković M., Pavun L., 2020, Zinc-quercetin complex-from determination to bioactivity, Acta Agriculturae Serbica, 25 (50): 113-120, doi: 10.5937/AASer2050113U.

Wang S., Yao J., Zhou B., Yang J., Chaudry MT., Wang M., Xiao F., Li Y., Yin W., 2018, Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro, Journal of Food Protection, 81 (1): 68-78, doi: 10.4315/0362-028XJFP-17-214.

Pereira RMS., Andrades NED., Paulino N., Swaya A., Eberlin M., Marcucci M., Favero GM., Novak EM., Bydlowski SP., 2007, Synthesis and characterization of a metal complex containing naringin and Cu, and its Antioxidant, antimicrobial, antiinflammatory and tumor cell cytotoxicity, Molecules, 12: 1352-1366.

Rawdkuen S., Suthiluk P., Kamhangwong D., Benjakul S., 2012, Antimicrobial activity of some potential active compounds against food spoilage microorganism, African Journal of Biotechnology, 11 (74): 13914-1392i, doi: 10.5897/AJB12.1400.

Veiko AG., Olchowik-Grabarek E., Sekowski S., Roszkowska A., Lapshina EA., Dobrzynska I., Zamaraeva M., Zavodnik IL., 2023, Antimicrobial activity of quercetin, naringenin, and catechin: flavonoids inhibit Staphylococcus aureus-induced hemolysis and modify membranes of bacteria and erythrocytes, Molecules, 28 (1252): 1-19, doi: 10.3390/molecules28031252.

Abdullah R., Younas Q., Kaleem A., Iqtedar M., Aftab M., 2024, Phytochemical and antimicrobial properties of different plants and in siliko Investigation of their bioactive compounds in wound healing and rheumatism, Saudi Journal of Biological Sciences, 31: 1-9, doi: 10.1016/j.sjbs.2024.103942.

Apriani R., Sadino A., Senania A., Oetari Z., Fajrianti GNN., 2024, Antibacterial properties of bacterial cellulose-quercetin composite membrane, Journal of Scientific and Applied Chemistry, 27 (6): 278-283, doi: 10.14710/jksa.27.6.278-283.

Munir N., Hanif M., Dias DA., Abideen Z., 2021, The role of halophitic nanoparticles towards the remediation of degreaded and saline agricultural lands, Environmental Science and Pollution Research, 28 (43): 60383-60405, doi: 10.1007/s11356-021-16139-9.

Naomi R., Idrus R., Fuzi MB., 2020, Plant-vs. bacterial-derived cellulose for wound healing: a review, International Journal of Environmental Research and Public Health, 17 (1): 1-25, doi: 10.3390/ijerph17186803.

Burhan AH., Bintoro DW., Mardiyaingsih A., Nurhaeni F., 2022, Studi literatur: aktivitas antibakteri minyak atsiri daun dan batang tanaman terhadap bakteri Klebsiella pneumonia, Sosial Pendidikan, 6 (2): 119-133, doi: 10.46799/arl.v6i2.126.

Nurul A., Setiawan I., Yusa D., Trisna D., Halisa N., Putri O., Ekawati O., Umi Y., Fanya Z., 2023, Tinjauan artikel: uji mikrobiologi, Jurnal Farmasi, 12 (2): 31-36.

Ghozali M., Meliana Y., Chalid M., 2021, Synthesis and characterization of bacterial cellulose by Acetobacter xylinum using liquid tapioca waste, Materials Today: Proceedings, 44: 2131-2134, doi: 10.1016/j.matpr.2020.12.274.

Downloads

Published

04-06-2025

How to Cite

[1]
R. Apriani and G. Ningsih Noer Fajrianti, “Optimization of Bacterial Cellulose-Quercetin Biocomposite Synthesis Using The Ex-Situ Method and Its Application as an Antibacterial Agent”, He: JSAC, vol. 5, no. 1, pp. 1–10, Jun. 2025.